LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Management Intensity Controls Nitrogen-Use-Efficiency and Flows in Grasslands—A 15N Tracing Experiment

Photo from wikipedia

The consequences of land use intensification and climate warming on productivity, fates of fertilizer nitrogen (N) and the overall soil N balance of montane grasslands remain poorly understood. Here, we… Click to show full abstract

The consequences of land use intensification and climate warming on productivity, fates of fertilizer nitrogen (N) and the overall soil N balance of montane grasslands remain poorly understood. Here, we report findings of a 15N slurry-tracing experiment on large grassland plant–soil lysimeters exposed to different management intensities (extensive vs. intensive) and climates (control; translocation: +2 °C, reduced precipitation). Surface-applied cattle slurry was enriched with both 15NH4+ and 15N-urea in order to trace its fate in the plant–soil system. Recovery of 15N tracer in plants was low (7–17%), while it was considerably higher in the soil N pool (32–42%), indicating N stabilization in soil organic nitrogen (SON). Total 15N recovery was only 49% ± 7% indicating substantial fertilizer N losses to the environment. With harvest N exports exceeding N fertilization rates, the N balance was negative for all climate and management treatments. Intensive management had an increased deficit relative to extensive management. In contrast, simulated climate change had no significant effects on the grassland N balance. These results suggest a risk of soil N mining in montane grasslands under land use intensification based on broadcast liquid slurry application.

Keywords: management intensity; tracing experiment; controls nitrogen; intensity controls; management; soil

Journal Title: Agronomy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.