LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Mechanically Transplanting Methods and Planting Densities on Yield and Quality of Nanjing 2728 under Rice-Crayfish Continuous Production System

Photo from wikipedia

Rice–crayfish continuous production system offers high economic and ecology benefits, which developed rapidly in China. To investigate the effects of different mechanical transplanting methods and planting densities on rice yield… Click to show full abstract

Rice–crayfish continuous production system offers high economic and ecology benefits, which developed rapidly in China. To investigate the effects of different mechanical transplanting methods and planting densities on rice yield and quality, Nanjing 2728 was used to determine rice growth performance under mechanically transplanted carpet seedling (MTCS) with equal row spacing (30 cm) at five spacings and mechanically transplanted pot seedling (MTPS) with wide and narrow rows (23 + 33 cm) at five spacings. The results showed that MTPS presented significantly higher rice yields than MTCS as more spikelets per panicle. Rice yields of both mechanical transplanting methods first increased and then reduced with decreasing planting density, and its highest value was obtained at 77.9 × 104 seedlings ha−1. Compared with MTCS at the same stage, rice tiller dynamics of MTPS first increased and then decreased. Additionally, its dry matter accumulation per stem at jointing, heading, and maturity stages, leaf area index, photosynthetic potential, crop growth rate, and net assimilation rate were all significantly higher relative to MTCS. For each mechanical transplanting method, dry matter accumulation per panicle, leaf area index, photosynthetic potential, crop growth rate, and net assimilation rate from the sowing to jointing stages declined with decreasing planting density, while dry matter accumulation per stem and net assimilation rate from the heading to maturity stages increased. Compared with MTCS, MTPS significantly improved rice milling and appearance quality, decreasing density was also beneficial to rice milling and appearance quality, while grain content of amylose and protein were not sensitive to both transplanting method and planting density. Consequently, MTPS with 13.8 cm plant spacing is a suitable mechanical transplanting method for Nanjing 2728 to obtain better yield and quality under rice–crayfish continuous production system.

Keywords: rice; production system; quality; rice crayfish; crayfish continuous; continuous production

Journal Title: Agronomy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.