LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of the CLE Family in Three Nicotiana Species and Potential Roles of CLE Peptides in Osmotic and Salt Stress Responses

Photo by gcalebjones from unsplash

The CLE family (CLAVATA3/embryo surrounding region-related), a class of small secreted proteins, play important roles in plant development and stress responses. Members of the CLE family have been characterized in… Click to show full abstract

The CLE family (CLAVATA3/embryo surrounding region-related), a class of small secreted proteins, play important roles in plant development and stress responses. Members of the CLE family have been characterized in a number of plant species, including Arabidopsis and rice. However, limited information is available about CLE peptides in tobacco (Nicotiana tabacum) and related Nicotiana species. Here we report the identification of 84 CLE family members in three Nicotiana species based on sequence similarity. The newly identified CLE members, including 41 from N. tabacum, 19 from N. sylvestris, and 24 from N. tomentosiformis, together with 32 CLEs from Arabidopsis and 52 CLEs from tomato, formed 9 subgroups in a phylogenic tree. The unbalanced distribution of the Nicotiana CLEs in the subgroups suggested potential preferential gene family expansion during evolution. Expression of the NtCLE genes was analyzed and a number of the NtCLEs showed induced expression upon abiotic stress treatments. Synthetic peptides of several NtCLEs, when applied to detached tobacco leaf discs, were able to increase plants’ tolerance to osmotic and salinity stresses, suggesting potential roles of CLE peptides in the stress responses of tobacco.

Keywords: family; nicotiana species; cle peptides; stress responses; cle family

Journal Title: Agronomy
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.