LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biochemical Characterizations of the Putative Endolysin Ecd09610 Catalytic Domain from Clostridioides difficile

Photo by foliumcore from unsplash

Clostridioides difficile is the major pathogen of pseudomembranous colitis, and novel antimicrobial agents are sought after for its treatment. Phage-derived endolysins with species-specific lytic activity have potential as novel antimicrobial… Click to show full abstract

Clostridioides difficile is the major pathogen of pseudomembranous colitis, and novel antimicrobial agents are sought after for its treatment. Phage-derived endolysins with species-specific lytic activity have potential as novel antimicrobial agents. We surveyed the genome of C. difficile strain 630 and identified an endolysin gene, Ecd09610, which has an uncharacterized domain at the N-terminus and two catalytic domains that are homologous to glucosaminidase and endopeptidase at the C-terminus. Genes containing the two catalytic domains, the glucosaminidase domain and the endopeptidase domain, were cloned and expressed in Escherichia coli as N-terminal histidine-tagged proteins. The purified domain variants showed lytic activity almost specifically for C. difficile, which has a unique peptide bridge in its peptidoglycan. This species specificity is thought to depend on substrate cleavage activity rather than binding. The domain variants were thermostable, and, notably, the glucosaminidase domain remained active up to 100 °C. In addition, we determined the optimal pH and salt concentrations of these domain variants. Their properties are suitable for formulating a bacteriolytic enzyme as an antimicrobial agent. This lytic enzyme can serve as a scaffold for the construction of high lytic activity mutants with enhanced properties.

Keywords: endolysin; clostridioides difficile; domain variants; domain; lytic activity

Journal Title: Antibiotics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.