Antimicrobial host defense peptides (HDPs) are critically important for innate immunity. Small-molecule compounds with the ability to induce HDP synthesis are being actively explored for antimicrobial therapy. To facilitate the… Click to show full abstract
Antimicrobial host defense peptides (HDPs) are critically important for innate immunity. Small-molecule compounds with the ability to induce HDP synthesis are being actively explored for antimicrobial therapy. To facilitate the discovery of the compounds that specifically activate human β-defensin 1 (DEFB1) gene transcription, we established a cell-based high-throughput screening assay that employs HT-29/DEFB1-luc, a stable reporter cell line expressing the luciferase gene driven by a 3-Kb DEFB1 gene promoter. A screening of a library of 148 small-molecule epigenetic compounds led to the identification of 28 hits, with a minimum strictly standardized mean difference of 3.0. Fourteen compounds were further selected and confirmed to be capable of inducing DEFB1 mRNA expression in human HT-29 colonic epithelial cells. Desirably, the human cathelicidin antimicrobial peptide (CAMP) gene was also induced by these epigenetic compounds. Benzamide-containing histone deacetylase inhibitors (HDACi) were among the most potent HDP inducers identified in this study. Additionally, several major genes involved in intestinal barrier function, such as claudin-1, claudin-2, tight junction protein 1, and mucin 2, were differentially regulated by HDP inducers. These findings suggest the potential for the development of benzamide-based HDACi as host-directed antimicrobials for infectious disease control and prevention.
               
Click one of the above tabs to view related content.