Today, more than ever, the search for non-trivial sources of biologically active substances is critical. Plants of the genus Rumex are noteworthy. Plants of this genus stand out for a… Click to show full abstract
Today, more than ever, the search for non-trivial sources of biologically active substances is critical. Plants of the genus Rumex are noteworthy. Plants of this genus stand out for a number of advantages from the dominant plant core of meadow phytocenoses of the temperate climatic zone: a short growing season, an intensive increase in biomass, and undemanding growth conditions. In addition, this plant genus is known as a super-producer of secondary phenolic compounds. The wide distribution and intensive synthesis of biologically active substances make plants from the genus Rumex a promising object for study. Seven species of the genus Rumex (R. acetosa, R. acetosella, R. confertus, R. crispus, R. maritimus, R. obtusifolius, and R. sanguineus) were analyzed. Plants were collected under relatively uniform growing conditions. For subsequent extraction and analysis of phenolic compounds, as well as antioxidant activity, plants leaves were used. R. acetosella, R. crispus, R. maritimus, R. obtusifolius, and R. sanguineus were characterized by a high total content of phenolic compounds (111–131 mg g–1). The maximum content of flavonoids was found in the leaves of R. maritimus and R. acetosella. At the same time, according to high-performance liquid chromatography with diode-array detection (HPLC-DAD) analysis, derivatives of flavones (apigenin and luteolin) predominated in the leaves of R. acetosella, while in other species, mainly derivatives of flavonols (quercetin and kaempferol) were identified. Plants of R. acetosa, in comparison with other studied species, were characterized by a lower content of the studied groups of phenolic compounds, with the exception of hydroxycinnamic acids, the content of which in this species was comparable to the content of flavonoids. The maximum content of catechins was found in R. sanguineus; proanthocyanidins—in R. sanguineus, R. obtusifolius, and R. crispus; and tannins—in R. obtusifolius. Extracts from R. crispus were characterized by high antioxidant activity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP) assays. In addition, the assessment of the phenolic profile of the plant made it possible to group the plants within the framework of cluster analysis. The distribution pattern in the clusters corresponded to the generally accepted taxonomy, with a characteristic division into subgenera (Acetosa, Acetosella, and Rumex). Thus, the phenolic profile can be considered as an additional instrumental approach when drawing up a systematic hierarchy.
               
Click one of the above tabs to view related content.