Hypertension remains the leading cause of disease burden worldwide. Hypertension can originate in the early stages of life. A growing body of evidence suggests that oxidative stress, which is characterized… Click to show full abstract
Hypertension remains the leading cause of disease burden worldwide. Hypertension can originate in the early stages of life. A growing body of evidence suggests that oxidative stress, which is characterized as a reactive oxygen species (ROS)/nitric oxide (NO) disequilibrium, has a pivotal role in the hypertension of developmental origins. Results from animal studies support the idea that early-life oxidative stress causes developmental programming in prime blood pressure (BP)-controlled organs such as the brain, kidneys, heart, and blood vessels, leading to hypertension in adult offspring. Conversely, perinatal use of antioxidants can counteract oxidative stress and therefore lower BP. This review discusses the interaction between oxidative stress and developmental programming in hypertension. It will also discuss evidence from animal models, how oxidative stress connects with other core mechanisms, and the potential of antioxidant therapy as a novel preventive strategy to prevent the hypertension of developmental origins.
               
Click one of the above tabs to view related content.