LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multifaceted Roles of the KEAP1–NRF2 System in Cancer and Inflammatory Disease Milieu

Photo from wikipedia

In a multicellular environment, many different types of cells interact with each other. The KEAP1–NRF2 system defends against electrophilic and oxidative stresses in various types of cells. However, the KEAP1–NRF2… Click to show full abstract

In a multicellular environment, many different types of cells interact with each other. The KEAP1–NRF2 system defends against electrophilic and oxidative stresses in various types of cells. However, the KEAP1–NRF2 system also regulates the expression of genes involved in cell proliferation and inflammation, indicating that the system plays cell type-specific roles. In this review, we introduce the multifarious roles of the KEAP1–NRF2 system in various types of cells, especially focusing on cancer and inflammatory diseases. Cancer cells frequently hijack the KEAP1–NRF2 system, and NRF2 activation confers cancer cells with a proliferative advantage and therapeutic resistance. In contrast, the activation of NRF2 in immune cells, especially in myeloid cells, suppresses tumor development. In chronic inflammatory diseases, such as sickle cell disease, NRF2 activation in myeloid and endothelial cells represses the expression of proinflammatory cytokine and adherent molecule genes, mitigating inflammation and organ damage. Based on these cell-specific roles played by the KEAP1–NRF2 system, NRF2 inducers have been utilized for the treatment of inflammatory diseases. In addition, the use of NRF2 inducers and/or inhibitors with canonical antineoplastic drugs is an emerging approach to cancer treatment.

Keywords: system; keap1 nrf2; roles keap1; nrf2 system; cancer inflammatory

Journal Title: Antioxidants
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.