LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

NLRP3 Inflammasome and Pyroptosis in Liver Pathophysiology: The Emerging Relevance of Nrf2 Inducers

Photo from wikipedia

Inflammasomes, particularly the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome, apparently serve as crucial regulators of the inflammatory response through the activation of Caspase-1 and… Click to show full abstract

Inflammasomes, particularly the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome, apparently serve as crucial regulators of the inflammatory response through the activation of Caspase-1 and induction of pro-inflammatory cytokines and pyroptotic cell death. Pyroptosis is a type of programmed cell death mediated by Caspase-1 cleavage of Gasdermin D and the insertion of its N-terminal fragment into the plasma membrane, where it forms pores, enabling the release of different pro-inflammatory mediators. Pyroptosis is considered not only a pro-inflammatory pathway involved in liver pathophysiology but also an important pro-fibrotic mediator. Diverse molecular mechanisms linking oxidative stress, inflammasome activation, pyroptosis, and the progression of liver pathologies have been documented. Numerous studies have indicated the protective effects of several antioxidants, with the ability to induce nuclear factor erythroid 2-related factor 2 (Nrf2) activity on liver inflammation and fibrosis. In this review, we have summarised recent studies addressing the role of the NLRP3 inflammasome and pyroptosis in the pathogenesis of various hepatic diseases, highlighting the potential application of Nrf2 inducers in the prevention of pyroptosis as liver protective compounds.

Keywords: pyroptosis; inflammasome pyroptosis; nrf2 inducers; liver pathophysiology; nlrp3 inflammasome

Journal Title: Antioxidants
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.