Inflammasomes, particularly the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome, apparently serve as crucial regulators of the inflammatory response through the activation of Caspase-1 and… Click to show full abstract
Inflammasomes, particularly the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome, apparently serve as crucial regulators of the inflammatory response through the activation of Caspase-1 and induction of pro-inflammatory cytokines and pyroptotic cell death. Pyroptosis is a type of programmed cell death mediated by Caspase-1 cleavage of Gasdermin D and the insertion of its N-terminal fragment into the plasma membrane, where it forms pores, enabling the release of different pro-inflammatory mediators. Pyroptosis is considered not only a pro-inflammatory pathway involved in liver pathophysiology but also an important pro-fibrotic mediator. Diverse molecular mechanisms linking oxidative stress, inflammasome activation, pyroptosis, and the progression of liver pathologies have been documented. Numerous studies have indicated the protective effects of several antioxidants, with the ability to induce nuclear factor erythroid 2-related factor 2 (Nrf2) activity on liver inflammation and fibrosis. In this review, we have summarised recent studies addressing the role of the NLRP3 inflammasome and pyroptosis in the pathogenesis of various hepatic diseases, highlighting the potential application of Nrf2 inducers in the prevention of pyroptosis as liver protective compounds.
               
Click one of the above tabs to view related content.