LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Vitro Efficacy and Molecular Mechanism of Curcumin Analog in Pathological Regulation of Spinocerebellar Ataxia Type 3

Photo by stayandroam from unsplash

Unlike other nuclear factor erythroid-2-related factor 2 (Nrf2) activators, the mechanism of action of curcumin analog, ASC-JM17 (JM17), in regulating oxidative homeostasis remains unknown. Spinocerebellar ataxia type 3 (SCA3) is… Click to show full abstract

Unlike other nuclear factor erythroid-2-related factor 2 (Nrf2) activators, the mechanism of action of curcumin analog, ASC-JM17 (JM17), in regulating oxidative homeostasis remains unknown. Spinocerebellar ataxia type 3 (SCA3) is an inherited polyglutamine neurodegenerative disease caused mainly by polyglutamine neurotoxicity and oxidative stress. Presently, we compared actions of JM17 with those of known Nrf2 activators, omaveloxolone (RTA-408) and dimethyl fumarate (DMF), using human neuroblastoma SK-N-SH cells with stable transfection of full-length ataxin-3 protein with 78 CAG repeats (MJD78) to clarify the resulting pathological mechanism by assaying mitochondrial function, mutant ataxin-3 protein toxicity, and oxidative stress. JM17, 1 μM, comprehensively restored mitochondrial function, decreased mutant protein aggregates, and attenuated intracellular/mitochondrial reactive oxygen species (ROS) levels. Although JM17 induced dose-dependent Nrf2 activation, a low dose of JM17 (less than 5 μM) still had a better antioxidant ability compared to the other Nrf2 activators and specifically increased mitochondrial superoxide dismutase 2 in an Nrf2-dependent manner as shown by knockdown experiments with siRNA. It showed that activation of Nrf2 in response to ROS generated in mitochondria could play an import role in the benefit of JM17. This study presents the diversified regulation of JM17 in a pathological process and helped develop more effective therapeutic strategies for SCA3.

Keywords: ataxia type; jm17; curcumin analog; spinocerebellar ataxia

Journal Title: Antioxidants
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.