The current study assessed the metabolite abundance, alpha (α)-amylase and α-glucosidase inhibitory, antioxidant, and antibacterial activity of the ethyl acetate extract (EAE) of endophytic Penicillium lanosum (PL) and Penicillium radiatolobatum… Click to show full abstract
The current study assessed the metabolite abundance, alpha (α)-amylase and α-glucosidase inhibitory, antioxidant, and antibacterial activity of the ethyl acetate extract (EAE) of endophytic Penicillium lanosum (PL) and Penicillium radiatolobatum (PR). A higher extract yield was found in EAE-PR with a total phenolic content of 119.87 ± 3.74 mg of GAE/g DW and a total flavonoid content of 16.26 ± 1.95 mg of QE/g DW. The EAE-PR inhibited α-amylase and scavenged ABTS+ radicals with a half-maximal inhibitory concentration (IC50) of 362.5 and 37.5 µg/mL, respectively. Compared with EAE-PL, EAE-PR exhibited higher antibacterial activity against Gram-positive and Gram-negative pathogens. Treatment with EAE-PR (1000 µg/mL) did not cause significant toxicity in the HEK-293 cell line compared to the control cells (p < 0.05). EAE-PR treatments (250–1000 µg/mL) showed higher cytoprotective effects toward H2O2-stressed HEK-293 cells compared with ascorbic acid (AA). The UHPLC-Q-TOF-MS/MS analysis revealed the presence of thiophene A (C13H8S), limonene (C10H16), and phenylacetic acid (C8H8O2) in EAE-PR. Furthermore, these compounds demonstrated substantial interactions with diabetes (α-amylase and α-glucosidase), oxidative stress (NADPH-oxidase), and bacteria (D-alanine D-alanine ligase)-related enzymes/proteins evidenced in silico molecular docking analysis.
               
Click one of the above tabs to view related content.