LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inhibitory Peptide of Soluble Guanylyl Cyclase/Trx1 Interface Blunts the Dual Redox Signaling Functions of the Complex

Photo from wikipedia

Soluble guanylyl cyclase (GC1) and oxido-reductase thioredoxin (Trx1) form a complex that mediates two NO signaling pathways as a function of the redox state of cells. Under physiological conditions, reduced… Click to show full abstract

Soluble guanylyl cyclase (GC1) and oxido-reductase thioredoxin (Trx1) form a complex that mediates two NO signaling pathways as a function of the redox state of cells. Under physiological conditions, reduced Trx1 (rTrx1) supports the canonical NO-GC1-cGMP pathway by protecting GC1 activity from thiol oxidation. Under oxidative stress, the NO-cGMP pathway is disrupted by the S-nitrosation of GC1 (addition of a NO group to a cysteine). In turn, SNO-GC1 initiates transnitrosation cascades, using oxidized thioredoxin (oTrx1) as a nitrosothiol relay. We designed an inhibitory peptide that blocked the interaction between GC1 and Trx1. This inhibition resulted in the loss of a) the rTrx1 enhancing effect of GC1 cGMP-forming activity in vitro and in cells and its ability to reduce the multimeric oxidized GC1 and b) GC1’s ability to fully reduce oTrx1, thus identifying GC1 novel reductase activity. Moreover, an inhibitory peptide blocked the transfer of S-nitrosothiols from SNO-GC1 to oTrx1. In Jurkat T cells, oTrx1 transnitrosates procaspase-3, thereby inhibiting caspase-3 activity. Using the inhibitory peptide, we demonstrated that S-nitrosation of caspase-3 is the result of a transnitrosation cascade initiated by SNO-GC1 and mediated by oTrx1. Consequently, the peptide significantly increased caspase-3 activity in Jurkat cells, providing a promising therapy for some cancers.

Keywords: soluble guanylyl; guanylyl cyclase; activity; gc1; inhibitory peptide

Journal Title: Antioxidants
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.