LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antioxidant Protection from UV- and Light-Stress Related to Carotenoid Structures

Photo by pawelmc from unsplash

This review summarizes studies of protection against singlet oxygen and radical damage by carotenoids. The main focus is on how substitutions of the carotenoid molecules determine high antioxidant activities such… Click to show full abstract

This review summarizes studies of protection against singlet oxygen and radical damage by carotenoids. The main focus is on how substitutions of the carotenoid molecules determine high antioxidant activities such as singlet oxygen quenching and radical scavenging. Applied assays were carried out either in vitro in solvents or with liposomes, and in a few cases with living organisms. In the latter, protection by carotenoids especially of photosynthesis against light- and UV-stress is of major importance, but also heterotrophic organisms suffer from high light and UV exposure which can be alleviated by carotenoids. Carotenoids to be compared include C30, C40 and C50 molecules either acyclic, monocyclic or bicyclic with different substitutions including sugar and fatty acid moieties. Although some studies are difficult to compare, there is a tendency towards mono and bicyclic carotenoids with keto groups at C-4/C-4’ and the longest possible polyene structure functions to act best in singlet oxygen quenching and radical scavenging. Size of the carotenoid and lipophilic substituents such as fatty acids seem to be of minor importance for their activity but hydroxyl groups at an acyclic end and especially glycosylation of these hydroxyl groups enhance carotenoid activity.

Keywords: antioxidant protection; carotenoid; protection; light stress; singlet oxygen; protection light

Journal Title: Antioxidants
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.