Reactive oxygen species (ROS) and nitric oxide (NO) are produced in all aerobic life forms under both physiological and adverse conditions. Unregulated ROS/NO generation causes nitro-oxidative damage, which has a… Click to show full abstract
Reactive oxygen species (ROS) and nitric oxide (NO) are produced in all aerobic life forms under both physiological and adverse conditions. Unregulated ROS/NO generation causes nitro-oxidative damage, which has a detrimental impact on the function of essential macromolecules. ROS/NO production is also involved in signaling processes as secondary messengers in plant cells under physiological conditions. ROS/NO generation takes place in different subcellular compartments including chloroplasts, mitochondria, peroxisomes, vacuoles, and a diverse range of plant membranes. This compartmentalization has been identified as an additional cellular strategy for regulating these molecules. This assessment of subcellular ROS/NO metabolisms includes the following processes: ROS/NO generation in different plant cell sites; ROS interactions with other signaling molecules, such as mitogen-activated protein kinases (MAPKs), phosphatase, calcium (Ca2+), and activator proteins; redox-sensitive genes regulated by the iron-responsive element/iron regulatory protein (IRE-IRP) system and iron regulatory transporter 1(IRT1); and ROS/NO crosstalk during signal transduction. All these processes highlight the complex relationship between ROS and NO metabolism which needs to be evaluated from a broad perspective.
               
Click one of the above tabs to view related content.