The compensation of an electrical system from passive compensators mainly focuses on linear systems where the consumption of charges does not vary significantly over time. In three-phase three-wire systems, when… Click to show full abstract
The compensation of an electrical system from passive compensators mainly focuses on linear systems where the consumption of charges does not vary significantly over time. In three-phase three-wire systems, when the network voltages are unbalanced, negative-sequence voltages and currents appear, which can significantly increase the total apparent power supplied by the network. This also increases the network losses. This paper presents a method for calculating the compensation of the positive-sequence reactive power and unbalanced powers caused by the negative-sequence line currents using reactive elements (coils and/or capacitors). The compensation is applied to three-phase three-wire linear systems with unbalanced voltages and loads, which are connected to an infinite power network. The method is independent of the load characteristics, where only the line-to-line voltages and line currents, at the point where compensation is desired, need to be known in advance. The solution obtained is optimal, and the system observed from the network behaves as one that only consumes the active power required by a load with a fully balanced current system. To understand the proposed method and demonstrate its validity, a case study of a three-phase three-wire linear system connected to an infinite power network with unbalanced voltages and currents is conducted.
               
Click one of the above tabs to view related content.