In this paper, a new kind of gypsum-concrete dense-column thermal insulation composite board was developed, with seismic tests conducted on three specimens under quasi-static loading conditions. The fracture feature, hysteresis… Click to show full abstract
In this paper, a new kind of gypsum-concrete dense-column thermal insulation composite board was developed, with seismic tests conducted on three specimens under quasi-static loading conditions. The fracture feature, hysteresis behavior, material strain, load-bearing and deforming capacity, and energy-dissipating capacity of the composite board were analyzed. The results indicated that this composite board has a favorable energy-dissipating capacity, i.e., relatively high seismic performance. By comparing with the experimental results of composite boards without thermal insulation systems, the influence regularity of thermal insulation system on the deformation behavior of composite board was investigated. The comparison result indicated that with a thermal insulation system, the bearing capacity and ductility of composite board are obviously increased, implying that the thermal insulation system is beneficial for the seismic performance of composite boards.
               
Click one of the above tabs to view related content.