Due to the convergence of advanced technologies such as the Internet of Things, Artificial Intelligence, and Big Data, a healthcare platform accumulates data in a huge quantity from several heterogeneous… Click to show full abstract
Due to the convergence of advanced technologies such as the Internet of Things, Artificial Intelligence, and Big Data, a healthcare platform accumulates data in a huge quantity from several heterogeneous sources. The adequate usage of this data may increase the impact of and improve the healthcare service quality; however, the quality of the data may be questionable. Assessing the quality of the data for the task in hand may reduce the associated risks, and increase the confidence of the data usability. To overcome the aforementioned challenges, this paper presents the web objects based contextual data quality assessment model with enhanced classification metric parameters. A semantic ontology of virtual objects, composite virtual objects, and services is also proposed for the parameterization of contextual data quality assessment of web objects data. The novelty of this article is the provision of contextual data quality assessment mechanisms at the data acquisition, assessment, and service level for the web objects enabled semantic data applications. To evaluate the proposed data quality assessment mechanism, web objects enabled affective stress and teens’ mood care semantic data applications are designed, and a deep data quality learning model is developed. The findings of the proposed approach reveal that, once a data quality assessment model is trained on web objects enabled healthcare semantic data, it could be used to classify the incoming data quality in various contextual data quality metric parameters. Moreover, the data quality assessment mechanism presented in this paper can be used to other application domains by incorporating data quality analysis requirements ontology.
               
Click one of the above tabs to view related content.