LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Some Algorithms to Solve a Bi-Objectives Problem for Team Selection

Photo from wikipedia

In real life, many problems are instances of combinatorial optimization. Cross-functional team selection is one of the typical issues. The decision-maker has to select solutions among ( k h )… Click to show full abstract

In real life, many problems are instances of combinatorial optimization. Cross-functional team selection is one of the typical issues. The decision-maker has to select solutions among ( k h ) solutions in the decision space, where k is the number of all candidates, and h is the number of members in the selected team. This paper is our continuing work since 2018; here, we introduce the completed version of the Min Distance to the Boundary model (MDSB) that allows access to both the "deep" and "wide" aspects of the selected team. The compromise programming approach enables decision-makers to ignore the parameters in the decision-making process. Instead, they point to the one scenario they expect. The aim of model construction focuses on finding the solution that matched the most to the expectation. We develop two algorithms: one is the genetic algorithm and another based on the philosophy of DC programming (DC) and its algorithm (DCA) to find the optimal solution. We also compared the introduced algorithms with the MIQP-CPLEX search algorithm to show their effectiveness.

Keywords: decision; team; team selection; algorithms solve; solve objectives

Journal Title: Applied Sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.