Coherent optical transceivers offer significant advantages over direct-detect optical transceivers. However, both intradyne coherent transmitters (ICT) and intradyne coherent receivers (ICR) are more complicated and require careful calibration. Traditionally, an… Click to show full abstract
Coherent optical transceivers offer significant advantages over direct-detect optical transceivers. However, both intradyne coherent transmitters (ICT) and intradyne coherent receivers (ICR) are more complicated and require careful calibration. Traditionally, an ICR is calibrated through heterodyne beating using a single-polarized signal. Active stabilization to maintain a constant state of polarization for the calibration signal is necessary, leading to a relatively complicated setup. We demonstrate a novel method through heterodyne beating using a polarization-multiplexed signal. No polarization control is needed, resulting in a much simpler configuration. The calibration results obtained through the polarization-multiplexed signal match with the results using a single polarized signal. Moreover, this polarization-multiplexed signal can be generated within the intradyne coherent transmitter without using any external components. This innovative technique enables the calibration of a coherent receiver for deployment in the field throughout its lifetime.
               
Click one of the above tabs to view related content.