LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Residual Mechanical Properties of Fiber-Reinforced Lightweight Aggregate Concrete after Exposure to Elevated Temperatures

Photo from wikipedia

In this study, the effects of individual and mixed fiber on the mechanical properties of lightweight aggregate concrete (LWC) after exposure to elevated temperatures were examined. Concrete specimens were divided… Click to show full abstract

In this study, the effects of individual and mixed fiber on the mechanical properties of lightweight aggregate concrete (LWC) after exposure to elevated temperatures were examined. Concrete specimens were divided into a control group (ordinary LWC) and an experimental group (fiber-reinforced LWC), and their compressive strength, elastic modulus, and flexural strength after heating to high temperatures of 400–800 °C were investigated. The four test parameters included concrete type, concrete strength, fiber type, and targeted temperature. The test results show that after exposure to 400–800 °C, the variation in mechanical properties of each group of LWC showed a trend of increasing first and then decreasing. After exposure to 400 °C, the residual mechanical properties of all specimens did not attenuate due to the drying effect of the high temperature and the more sufficient cement hydration reaction. However, after exposure to 800 °C, the residual mechanical properties significantly reduced. Overall, the mixed fiber-reinforced LWC showed a better ability to resist the loss of mechanical properties caused by high temperature. Compared with the loss of compressive strength, the flexural strength was relatively lost.

Keywords: strength; exposure; fiber reinforced; lightweight aggregate; mechanical properties; residual mechanical

Journal Title: Applied Sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.