LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Artificial Intelligence Approach to Prediction of Corn Yields under Extreme Weather Conditions Using Satellite and Meteorological Data

Photo from wikipedia

This paper describes the development of an optimized corn yield prediction model under extreme weather conditions for the Midwestern United States (US). We tested six different artificial intelligence (AI) models… Click to show full abstract

This paper describes the development of an optimized corn yield prediction model under extreme weather conditions for the Midwestern United States (US). We tested six different artificial intelligence (AI) models using satellite images and meteorological data for the dominant growth period. To examine the effects of extreme weather events, we defined the drought and heatwave by considering the characteristics of corn growth and selected the cases for sensitivity tests from a historical database. In particular, we conducted an optimization for the hyperparameters of the deep neural network (DNN) model to ensure the best configuration for accuracy improvement. The result for drought cases showed that our DNN model was approximately 51–98% more accurate than the other five AI models in terms of root mean square error (RMSE). For the heatwave cases, our DNN model showed approximately 30–77% better accuracy in terms of RMSE. The correlation coefficient was 0.954 for drought cases and 0.887–0.914 for heatwave cases. Moreover, the accuracy of our DNN model was very stable, despite the increases in the duration of the heatwave. It indicates that the optimized DNN model can provide robust predictions for corn yield under conditions of extreme weather and can be extended to other prediction models for various crops in future work.

Keywords: weather conditions; dnn model; corn; extreme weather; prediction

Journal Title: Applied Sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.