LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Familiarization and Reliability of the Isometric Knee Extension Test for Rapid Force Production Assessment

Photo from wikipedia

Despite the rising interest in the use of portable force sensors during isometric exercises to inform on neuromuscular performance, the design of practical field-based methods to obtain reliable measures is… Click to show full abstract

Despite the rising interest in the use of portable force sensors during isometric exercises to inform on neuromuscular performance, the design of practical field-based methods to obtain reliable measures is an ongoing challenge. We aim at identifying the intra-session and test-retest reliability of a rapid, isometric knee extension test to evaluate the maximal voluntary concentric force (MVC), rate of force development (RFD) and impulse following a field-based approach. On two occasions, 14 athletes unfamiliar with the test completed three sets of 2 s ballistic contractions (as fast and hard as possible) with 30 s rest. Raw and filtered data were collected in real time using a portable force sensor. RFD and impulse were highly reliability during “late” phases of the contraction (0–250 ms) since the first session (coefficient of variation (CV) < 9.8%). Earlier phases (0–150 ms) achieved a moderate reliability after one familiarization session (CV < 7.1%). Measures at 0–50 ms did not reach sufficient reliability (CV ~ 14%). MVC was accurately assessed. Dominant limbs were not importantly altered by the familiarization. In opposite, non-dominant limbs showed large variations. New evidence is provided about the positive effects of a single familiarization session to improve the reliability the isometric knee extension test for rapid force production assessment. Coaches and practitioners may benefit of from these findings to conduct practical and reliable assessments of the rapid force production using a portable force sensor and a field-based approach.

Keywords: knee extension; familiarization; force; test; reliability; isometric knee

Journal Title: Applied Sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.