LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Learning-Assisted Rain Attenuation Prediction Models

Photo from wikipedia

Rain attenuation becomes significant to degrade the earth-space or terrestrial radio link’s signal-to-noise ratio (SNR). So, to maintain the desired SNR level, with the help of fade mitigation techniques (FMTs),… Click to show full abstract

Rain attenuation becomes significant to degrade the earth-space or terrestrial radio link’s signal-to-noise ratio (SNR). So, to maintain the desired SNR level, with the help of fade mitigation techniques (FMTs), it needs to control transmitted signals power considering the expected rainfall. However, since the rain event is a random phenomenon, the rain attenuation that may be experienced by a specific link is difficult to estimate. Many empirical, physical, and compound nature-based models exist in the literature to predict the expected rain attenuation. Furthermore, many optimizations and decision-making functions have become simpler since the development of the learning-assisted (LA) technique. In this work, the LA rain attenuation (LARA) model was classified based on input parameters. Besides, for comparative analysis, each of the supported frequency components of LARA models were tabulated, and an accurate contribution of each model was identified. In contrast to all the currently available LARA models, the accuracy and correlation of input-output parameters are presented. Additionally, it summarizes and discusses open research issues and challenges.

Keywords: learning assisted; assisted rain; attenuation prediction; rain attenuation; rain

Journal Title: Applied Sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.