LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Shake Table Test of Long Span Cable-Stayed Bridge Subjected to Near-Fault Ground Motions Considering Velocity Pulse Effect and Non-Uniform Excitation

Photo by erwanhesry from unsplash

This paper presents the results of shake table tests of a scaled long span cable-stayed bridge (CSB). The design principles of the scaled CSB are first introduced. The first six… Click to show full abstract

This paper presents the results of shake table tests of a scaled long span cable-stayed bridge (CSB). The design principles of the scaled CSB are first introduced. The first six in-plane modes are then identified by the stochastic subspace identification (SSI) method. Furthermore, shake table tests of the CSB subjected to the non-pulse near-field (NNF) and velocity-pulse near-fault (PNF) ground motions are carried out. The tests indicated that: (1) the responses under longitudinal uniform excitation are mainly contributed by antisymmetric modes; (2) the maximum displacement of the tower occurs on the tower top node, the maximum acceleration response of the tower occurs on the middle cross beam, and the maximum bending moment of the tower occurs on the bottom section; (3) the deformation of the tower and girder subjected to uniform excitation is not always larger than that subjected to non-uniform excitation, and therefore the non-uniform case should be considered in the seismic design of CSBs.

Keywords: shake table; long span; uniform excitation; excitation; non uniform; span cable

Journal Title: Applied Sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.