LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Noise Level and Similarity Analysis for Computed Tomographic Thoracic Image with Fast Non-Local Means Denoising Algorithm

Photo from wikipedia

Although conventional denoising filters have been developed for noise reduction from digital images, these filters simultaneously cause blurring in the images. To address this problem, we proposed the fast non-local… Click to show full abstract

Although conventional denoising filters have been developed for noise reduction from digital images, these filters simultaneously cause blurring in the images. To address this problem, we proposed the fast non-local means (FNLM) denoising algorithm which would preserve the edge information of objects better than conventional denoising filters. In this study, we obtained thoracic computed tomography (CT) images from a male adult mesh (MASH) phantom modeled by computer and a five-year-old phantom to perform both the simulation study and the practical study. Subsequently, the FNLM denoising algorithm and conventional denoising filters, such as the Gaussian, median, and Wiener filters, were applied to the MASH phantom image adding Gaussian noise with a standard deviation of 0.002 and practical CT images. Finally, the results were compared quantitatively in terms of the coefficient of variation (COV), contrast-to-noise ratio (CNR), peak signal-to-noise ratio (PSNR), and correlation coefficient (CC). The results showed that the FNLM denoising algorithm was more efficient than the conventional denoising filters. In conclusion, through the simulation study and the practical study, this study demonstrated the feasibility of the FNLM denoising algorithm for noise reduction from thoracic CT images.

Keywords: study; fast non; noise; conventional denoising; denoising algorithm; denoising filters

Journal Title: Applied Sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.