LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Moderate Temperature Thermal Modification Combined with Wax Impregnation on Wood Properties

Photo from wikipedia

Thermal modification (TM) improves the hydrophobicity, dimensional stability, and durability of wood, but TM commonly results in severe color change and mechanical strength loss as wood is treated at higher… Click to show full abstract

Thermal modification (TM) improves the hydrophobicity, dimensional stability, and durability of wood, but TM commonly results in severe color change and mechanical strength loss as wood is treated at higher temperature. In this study, Pterocarpus macrocarpus Kurz wood was thermally modified at moderate temperature (150 °C) and higher temperature (200 °C), and subsequently TM wood at 150 °C was subjected to wax impregnation (WI), the effect of a combination of TM and WI on the hygroscopicity, dimensional stability, and mechanical properties, as well as the micro-structure of wood, were investigated and compared. The results showed that the mass loss of wood was slight at 150 °C TM, while it became severe at 200 °C TM conditions. TM conditions affected the amount of the subsequent wax impregnation; the equilibrium moisture content (EMC), water absorption ratio, and adsorption and absorption swelling of the 150 °C TM + WI group were lower than that of 200 °C TM, and presented the lowest value. Moderate temperature TM could improve the hydrophobicity and dimensional stability of wood, but WI played a key role in the improvement. TM decreased the modulus of rupture (MOR) of wood, while WI improved the MOR. TM increased the modulus of elasticity (MOE) of wood, but WI had little effect on MOE; Scanning electron microscope (SEM) observation showed that the wax was successfully impregnated into the wood interior, and presented an even distribution on the internal surfaces of wood cells; Fourier-transform infrared spectroscopy (FTIR) spectra verified the changes of –OH and C=O after TM and TM + WI, which contributed to decreasing hygroscopicity and improving the dimensional stability of the wood. Impregnated wax improved wood mechanical strength, but decreased the lightness, and deepened the color of wood. The combination of thermal modification at moderate temperature with subsequent wax impregnation is a practical approach for improving wood properties.

Keywords: temperature; thermal modification; wax impregnation; moderate temperature; wood

Journal Title: Applied Sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.