The concept stability measure under the Formal Concept Analysis (FCA) theory is useful for improving the accuracy of structure identification of social networks. Nevertheless, the stability calculation is an NP-complete… Click to show full abstract
The concept stability measure under the Formal Concept Analysis (FCA) theory is useful for improving the accuracy of structure identification of social networks. Nevertheless, the stability calculation is an NP-complete task which is the primary challenges in practical. Most existing studies have focused on the approximate estimate to calculate the stability. Therefore, we focus on introducing the Maximal Non-Generator-based Stability Calculation (MNG-SC) algorithm that directly deals with accurate stability calculation to pave the way for FCA’s application in structures identification of social networks. Specifically, a novel perspective of stability calculation by linking it to Maximal Non-Generator (MNG) is first provided. Then, the equivalence between maximal non-generator and lower neighbor concept is first proved, which greatly improves scalability and reduces computational complexity. The performed experiments show that the MNG-SC outperforms the pioneering approaches of the literature. Furthermore, a case study of identifying abnormal users in social networks is presented, which demonstrates the effectiveness and potential application of our algorithm.
               
Click one of the above tabs to view related content.