LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of Inverse Neural Networks for Optimal Pretension of Absorbable Mini Plate and Screw System

Photo from wikipedia

Mandibular fractures are common facial lesions typically treated with titanium plate and screw systems; nevertheless, this material is associated with secondary effects. Absorbable material for implants is an alternative to… Click to show full abstract

Mandibular fractures are common facial lesions typically treated with titanium plate and screw systems; nevertheless, this material is associated with secondary effects. Absorbable material for implants is an alternative to titanium, but there are also problems such as incomplete screw insertion and screw breakage due to high pretension in the screw caused by the insertion torque. The purpose of this paper is to find the optimal screw pretension (SP) in absorbable plate and screw systems by means of artificial neural network (ANN) and its inverse (ANNi). This optimal SP must satisfy a desired maximum von Mises strain (MVMS). For training the ANN, a database was generated by means of a design of experiments (DOE). Each DOE configuration was solved by means of finite element method (FEM) calculations. To obtain the optimal value for (SP) in the mini absorbable screw for fracture fixation, a strategy to invert the ANN is developed. Using the ANN coefficients, a sensitive study was performed to identify the influence of the design parameters in the MVMS. The optimal SP obtained was 14.9742 N. The MVMS condition was satisfied with an error less than 1.1% in comparison with FEM and ANN results. The screw shaft length is the most influencing MVMS parameter.

Keywords: plate; pretension absorbable; plate screw; application inverse; mini

Journal Title: Applied Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.