Optical scanning microscopy techniques based on the polarization control of the light have the capability of providing non invasive label-free contrast. By comparing the polarization states of the excitation light… Click to show full abstract
Optical scanning microscopy techniques based on the polarization control of the light have the capability of providing non invasive label-free contrast. By comparing the polarization states of the excitation light with its transformation after interaction with the sample, the full optical properties can be summarized in a single 4 × 4 Mueller matrix. The main challenge of such a technique is to encode and decode the polarized light in an optimal way pixel-by-pixel and take into account the polarimetric artifacts from the optical devices composing the instrument in a rigorous calibration step. In this review, we describe the different approaches for implementing such a technique into an optical scanning microscope, that requires a high speed rate polarization control. Thus, we explore the recent advances in term of technology from the industrial to the medical applications.
               
Click one of the above tabs to view related content.