LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low Effectiveness of the Introduction of pmaxGFP into Primary Human Coronary Endothelial Cells Using Cell-Penetrating Peptides and Nuclear-Localization Sequences in Non-Covalent Interactions

Photo from wikipedia

Cell-penetrating peptides (CPPs), due to their effectiveness and low cytotoxicity, are of increasing interest in the context of the transport of macromolecules to the cells. The simplest and safest method… Click to show full abstract

Cell-penetrating peptides (CPPs), due to their effectiveness and low cytotoxicity, are of increasing interest in the context of the transport of macromolecules to the cells. The simplest and safest method seems to be the non-covalent binding of CPP and cargo molecules. However, it requires the optimization of the reaction conditions. The study aimed to determine the effectiveness and cytotoxicity of the Pep-1, KALA, and TAT proteins as well as the NLS [47–55] and NLS [47–56] sequences derived from the Simian Vacuolating 40 (SV40) T-antigen in the context of the transport of the pmaxGFP plasmid to primary human coronary artery endothelial cells. The results are presented in the form of extensive photographic documentation, which shows significant differences in the efficiency of the transfection process between electroporation and the use of CPPs. The study presents negative results in which, despite the manipulation of various parameters (incubation time, incubation temperature, culture time, charge ratio, plasmid concentration), results similar to electroporation were not obtained.

Keywords: human coronary; cell penetrating; non covalent; penetrating peptides; primary human; endothelial cells

Journal Title: Applied Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.