LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptive Multi-View Image Mosaic Method for Conveyor Belt Surface Fault Online Detection

In order to improve the accuracy and real-time of image mosaic, realize the multi-view conveyor belt surface fault online detection, and solve the problem of longitudinal tear of conveyor belt,… Click to show full abstract

In order to improve the accuracy and real-time of image mosaic, realize the multi-view conveyor belt surface fault online detection, and solve the problem of longitudinal tear of conveyor belt, we in this paper propose an adaptive multi-view image mosaic (AMIM) method based on the combination of grayscale and feature. Firstly, the overlapping region of two adjacent images is preliminarily estimated by establishing the overlapping region estimation model, and then the grayscale-based method is used to register the overlapping region. Secondly, the image of interest (IOI) detection algorithm is used to divide the IOI and the non-IOI. Thirdly, only for the IOI, the feature-based partition and block registration method is used to register the images more accurately, the overlapping region is adaptively segmented, the speeded up robust features (SURF) algorithm is used to extract the feature points, and the random sample consensus (RANSAC) algorithm is used to achieve accurate registration. Finally, the improved weighted smoothing algorithm is used to fuse the two adjacent images. The experimental results showed that the registration rate reached 97.67%, and the average time of stitching was less than 500 ms. This method is accurate and fast, and is suitable for conveyor belt surface fault online detection.

Keywords: image mosaic; method; conveyor belt; image; detection

Journal Title: Applied Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.