LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of the LCST-Thermoresponsive Behavior of Novel Oligo(Ethylene Glycol)-Modified Pentafluorostyrene Homopolymers

Photo by campaign_creators from unsplash

Amphiphilic tetrafluorostyrene monomers (EFS8) carrying in the para position an oligoethylene glycol chain containing 8 oxyethylenic units on average were synthesized and used for preparation via activator regenerated by electron… Click to show full abstract

Amphiphilic tetrafluorostyrene monomers (EFS8) carrying in the para position an oligoethylene glycol chain containing 8 oxyethylenic units on average were synthesized and used for preparation via activator regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP) of the corresponding amphiphilic homopolymers (pEFS8-x) with different degrees of polymerization (x = 26 and 46). Combining light transmittance and nano-differential scanning calorimetry (n-DSC) measurements revealed that pEFS8-x homopolymers displayed a lower critical solution temperature (LCST) thermoresponsive behavior in water solutions. Moreover, n-DSC measurements revealed the presence in heating scans of a broad endothermic peak ascribable to the dehydration process of the polymer single chains (unimers) and their collapse into aggregates. Consistently, dynamic light scattering (DLS) measurements showed below the LCST the presence of small nanostructures with a hydrodynamic diameter size Dh of 6–7 nm, which collapsed into concentration-dependent larger multichain aggregates (Dh = 300–3000 nm) above LCST. Interestingly, n-DSC data showed that the unimer-aggregate transition was reversible up to a specific temperature (Trev) of each homopolymer, which in any case was higher than Tmax. When heating above Trev the transition was no longer reversible, causing the shift of Tonset and Tmax at lower values, thus suggesting an increase in hydrophobicity of the polymer systems associated with a temperature-dependent dehydration process.

Keywords: investigation lcst; novel oligo; lcst thermoresponsive; glycol; thermoresponsive behavior; behavior novel

Journal Title: Applied Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.