LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deposition of 3YSZ-TiC PVD Coatings with High-Power Impulse Magnetron Sputtering (HiPIMS)

Photo from wikipedia

Optimized coating adhesion and strength are the advantages of high-power impulse magnetron sputtering (HiPIMS) as an innovative physical vapor deposition (PVD) process. When depositing electrically non-conductive oxide ceramics as coatings… Click to show full abstract

Optimized coating adhesion and strength are the advantages of high-power impulse magnetron sputtering (HiPIMS) as an innovative physical vapor deposition (PVD) process. When depositing electrically non-conductive oxide ceramics as coatings with HiPIMS without dual magnetron sputtering (DMS) or mid-frequency (MF) sputtering, the growing coating leads to increasing electrical insulation of the anode. As a consequence, short circuits occur, and the process breaks down. This phenomenon is also known as the disappearing anode effect. In this study, a new approach involving adding electrically conductive carbide ceramics was tried to prevent the electrical insulation of the anode and thereby guarantee process stability. Yttria-stabilized zirconia (3YSZ) with 30 vol.% titanium carbide (TiC) targets are used in a non-reactive HiPIMS process. The main focus of this study is a parameter inquisition. Different HiPIMS parameters and their impact on the measured current at the substrate table are analyzed. This study shows the successful use of electrically conductive carbide ceramics in a non-conductive oxide as the target material. In addition, we discuss the observed high table currents with a low inert gas mix, where the process was not expected to be stable.

Keywords: high power; impulse magnetron; process; magnetron; magnetron sputtering; power impulse

Journal Title: Applied Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.