LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

β-lactolin, a Monoamine Oxidase B Inhibitory Lactopeptide, Suppresses Reactive Oxygen Species Production in Lipopolysaccharide-Stimulated Astrocytes

Photo from wikipedia

Astrocytes are known to regulate normal brain function. Monoamine oxidase B (MAO-B), an enzyme highly expressed in astrocytes, metabolizes dopamine (DA) and induces reactive oxygen species (ROS) production. We have… Click to show full abstract

Astrocytes are known to regulate normal brain function. Monoamine oxidase B (MAO-B), an enzyme highly expressed in astrocytes, metabolizes dopamine (DA) and induces reactive oxygen species (ROS) production. We have previously reported that β-lactolin, a whey-derived glycine–threonine–tryptophan–tyrosine tetrapeptide, improves memory impairment in mice by regulating the dopaminergic system; however, the effects of β-lactolin on astrocytes remain unclear. Herein, we investigated the effects of β-lactolin on cultured murine astrocytes. First, we measured intracellular ROS production in lipopolysaccharide-stimulated reactive astrocytes treated with or without β-lactolin, and then determined the role of β-lactolin in DA metabolism in astrocytes by measuring MAO-B enzyme activity and the levels of DA, and its metabolites, in DA-pretreated astrocytes. We found that β-lactolin significantly suppressed ROS production in lipopolysaccharide-stimulated reactive astrocytes (p = 2.76 × 10−6), inhibited MAO-B activity (p = 2.65 × 10−2) and increased intracellular DA levels (p = 1.08 × 10−3), suggesting that β-lactolin could inhibit DA metabolism in astrocytes. These results illustrate the novel protective effects of β-lactolin on reactive astrocytes and suggest their involvement in the memory-improving effects of β-lactolin via the dopaminergic system.

Keywords: production lipopolysaccharide; production; reactive oxygen; lipopolysaccharide stimulated; oxygen species; monoamine oxidase

Journal Title: Applied Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.