LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Different ISO Standards’ Wear Kinematic Profiles Change the TKA Inlay Load

Photo from wikipedia

Wear is an important factor in the long-term success of total knee arthroplasty (TKA). Therefore, wear testing methods have become standard in implant research and development. In the EU, these… Click to show full abstract

Wear is an important factor in the long-term success of total knee arthroplasty (TKA). Therefore, wear testing methods have become standard in implant research and development. In the EU, these are based on two simulation concepts, which are defined in standards ISO 14243-1 and 14243-3, differentiated by the control mode—force-controlled or displacement-controlled. The aim of this study was to compare the mechanical stresses within the different ISO concepts using a finite element model (the newest displacement-controlled norm from 2014 compared with force-controlled). The in silico model showed strong correlation with the experimental data (r > 0.8). The adapted force-controlled ISO showed higher mechanical stress during the gait cycle, which also might lead to higher wear rates (14243-1 (2009): 11.15 MPa, 10.15 MPa and 9.16 MPa). The displacement-controlled ISO led to higher mechanical stress because of the constraint at the end of the stance phase (14243-3: 20.59 MPa and 17.19 MPa). Future studies should analyse different inlay designs within the same ISO standards to guarantee comparability.

Keywords: inlay; different iso; iso standards; mpa; force controlled; iso

Journal Title: Applied Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.