LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Determining the Quadratic Electro-Optic Coefficients for Polycrystalline Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) Using a Polarization-Independent Electro-Optical Laser Beam Steerer

Photo by gabimedia from unsplash

A polarization-independent electro-optical (EO) laser beam steerer based on a bulk relaxor ferroelectric polycrystalline Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) was developed in this study to steer light ranging from visible to mid-IR wavelengths.… Click to show full abstract

A polarization-independent electro-optical (EO) laser beam steerer based on a bulk relaxor ferroelectric polycrystalline Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) was developed in this study to steer light ranging from visible to mid-IR wavelengths. A large number of the resolvable spots was achieved with this EO steerer. A Fourier-transform infrared (FTIR) spectroscopy was employed to determine the refractive index of the polycrystalline PMN-PT over a wide range of optical wavelengths. Besides measuring the transmission of this material, the capacitance bridge analysis was used to characterize the effect of temperature on the dielectric constant of PMN-PT. The performance of the steerer over a variety of wavelengths was simulated using COMSOL Multiphysics. The deflection angle for the wavelengths of 532, 632.8, 1550, and 4500 nm was measured in the lab in terms of mrad.mm/kV at two different temperatures and compared to the simulation results. The quadratic Kerr electro-optic coefficient and the halfwave electric field were determined for those four wavelengths at two different temperatures. The results showed polycrystalline PMN-PT has a large quadratic EO coefficient for visible light, almost as large in the near IR, but drops significantly in the mid-IR. No significant temperature dependency for the EO coefficients was observed for any of those four wavelengths.

Keywords: pmn; independent electro; polarization independent; optical laser; steerer; electro optical

Journal Title: Applied Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.