LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Muscle Fatigue’s Effects on the sEMG-Based Gait Phase Classification: An Experimental Study and a Novel Training Strategy

Photo by victorfreitas from unsplash

Surface Electromyography (sEMG) enables an intuitive control of wearable robots. The muscle fatigue-induced changes of sEMG signals might limit the long-term usage of the sEMG-based control algorithms. This paper presents… Click to show full abstract

Surface Electromyography (sEMG) enables an intuitive control of wearable robots. The muscle fatigue-induced changes of sEMG signals might limit the long-term usage of the sEMG-based control algorithms. This paper presents the performance deterioration of sEMG-based gait phase classifiers, explains the deterioration by analyzing the time-varying changes of the extracted features, and proposes a training strategy that can improve the classifiers’ robustness against muscle fatigue. In particular, we first select some features that are commonly used in fatigue-related studies and use them to classify gait phases under muscle fatigue. Then, we analyze the time-varying characteristics of extracted features, with the aim of explaining the performance of the classifiers. Finally, we propose a training strategy that effectively improves the robustness against muscle fatigue, which contributes to an easy-to-use method. Ten subjects performing prolonged walking are recruited. Our study contributes to a novel perspective of designing gait phase classifiers under muscle fatigue.

Keywords: training strategy; semg based; fatigue; muscle fatigue; gait phase

Journal Title: Applied Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.