(1) Background: Congenital factor (F) VII deficiency is caused by mutations in the F7 gene. Patients with modest differences in FVII levels may display large differences in clinical severity. The… Click to show full abstract
(1) Background: Congenital factor (F) VII deficiency is caused by mutations in the F7 gene. Patients with modest differences in FVII levels may display large differences in clinical severity. The variant p.A354V-p.P464Hfs is associated with reduced FVII antigen and activity. The aim of the study was to investigate the clinical manifestation of this variant and the underlying molecular mechanisms. (2) Methods: Analyses were conducted in 37 homozygous patients. The recombinant variant was produced in mammalian cells. (3) Results: We report a large variation in clinical phenotypes, which points out genetic and acquired components beyond F7 mutations as a source of variability. In contrast, patients displayed similarly reduced FVII plasma levels with antigen higher than its activity. Comparative analysis of the recombinant variant and of plasma samples from a subset of patients indicated the presence of an elongated variant with indistinguishable migration. Treatment of cells with the chemical chaperone 4-phenylbutyrate (4-PBA) improved the intracellular trafficking of the variant and increased its secretion to the conditioned medium up to 2-fold. However, the effect of 4-PBA on biological activity was marginal. (4) Conclusions: Chemical chaperones can be used as biochemical tools to study the intracellular fate of a trafficking-defective FVII variant.
               
Click one of the above tabs to view related content.