In dynamic virtual reality, visual cues and motor actions aid auditory perception. With multimodal integration and auditory adaptation effects, generic head-related transfer functions (HRTFs) may yield no significant disadvantage to… Click to show full abstract
In dynamic virtual reality, visual cues and motor actions aid auditory perception. With multimodal integration and auditory adaptation effects, generic head-related transfer functions (HRTFs) may yield no significant disadvantage to individual HRTFs regarding accurate auditory perception. This study compares two individual HRTF sets against a generic HRTF set by way of objective analysis and two subjective experiments. First, auditory-model-based predictions examine the objective deviations in localization cues between the sets. Next, the HRTFs are compared in a static subjective (N=8) localization experiment. Finally, the localization accuracy, timbre, and overall quality of the HRTF sets are evaluated subjectively (N=12) in a six-degrees-of-freedom audio-visual virtual environment. The results show statistically significant objective deviations between the sets, but no perceived localization or overall quality differences in the dynamic virtual reality.
               
Click one of the above tabs to view related content.