We synthesized Sr- and W-doped BaTiO3 (BTO) polycrystals by using a solid-state reaction method. The X-ray diffraction results showed that Sr and W atoms occupied the Ba and Ti sites… Click to show full abstract
We synthesized Sr- and W-doped BaTiO3 (BTO) polycrystals by using a solid-state reaction method. The X-ray diffraction results showed that Sr and W atoms occupied the Ba and Ti sites in tetragonal BTO, respectively, and there were changes in the lattice constants and the volumes in the Sr- and W-doped BTO. We found a change in the latent heat and the Curie temperature (TC) during the transition between the ferroelectric and paraelectric phases while increasing the contents of Sr and W in the Sr- and W-doped BTO. This can be explained by the fact that the doping of Sr and W atoms in BTO prevented a distinct transition between the ferroelectric tetragonal and paraelectric cubic structures by decreasing the c/a ratio to a value close to unity. This study shows a way toward a strategy for modulating a crystal structure by using proper dopants for future applications in ferroelectricity-based devices.
               
Click one of the above tabs to view related content.