LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

BengaliNet: A Low-Cost Novel Convolutional Neural Network for Bengali Handwritten Characters Recognition

Photo from wikipedia

As it is the seventh most-spoken language and fifth most-spoken native language in the world, the domain of Bengali handwritten character recognition has fascinated researchers for decades. Although other popular… Click to show full abstract

As it is the seventh most-spoken language and fifth most-spoken native language in the world, the domain of Bengali handwritten character recognition has fascinated researchers for decades. Although other popular languages i.e., English, Chinese, Hindi, Spanish, etc. have received many contributions in the area of handwritten character recognition, Bengali has not received many noteworthy contributions in this domain because of the complex curvatures and similar writing fashions of Bengali characters. Previously, studies were conducted by using different approaches based on traditional learning, and deep learning. In this research, we proposed a low-cost novel convolutional neural network architecture for the recognition of Bengali characters with only 2.24 to 2.43 million parameters based on the number of output classes. We considered 8 different formations of CMATERdb datasets based on previous studies for the training phase. With experimental analysis, we showed that our proposed system outperformed previous works by a noteworthy margin for all 8 datasets. Moreover, we tested our trained models on other available Bengali characters datasets such as Ekush, BanglaLekha, and NumtaDB datasets. Our proposed architecture achieved 96–99% overall accuracies for these datasets as well. We believe our contributions will be beneficial for developing an automated high-performance recognition tool for Bengali handwritten characters.

Keywords: novel convolutional; bengali; bengali handwritten; cost novel; low cost; recognition

Journal Title: Applied Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.