LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Particle PHD Filter for Dynamic Grid Map Building towards Indoor Environment

Photo from wikipedia

The PHD (Probability Hypothesis Density) filter is a sub-optimal multi-target Bayesian filter based on a random finite set, which is widely used in the tracking and estimation of dynamic objects… Click to show full abstract

The PHD (Probability Hypothesis Density) filter is a sub-optimal multi-target Bayesian filter based on a random finite set, which is widely used in the tracking and estimation of dynamic objects in outdoor environments. Compared with the outdoor environment, the indoor environment space and the shape of dynamic objects are relatively small, which puts forward higher requirements on the estimation accuracy and response speed of the filter. This paper proposes a method for fast and high-precision estimation of the dynamic objects’ velocity for mobile robots in an indoor environment. First, the indoor environment is represented as a dynamic grid map, and the state of dynamic objects is represented by its grid cells state as random finite sets. The estimation of dynamic objects’ speed information is realized by using the measurement-driven particle-based PHD filter. Second, we bound the dynamic grid map to the robot coordinate system and derived the update equation of the state of the particles with the movement of the robot. At the same time, in order to improve the perception accuracy and speed of the filter for dynamic targets, the CS (Current Statistical) motion model is added to the CV (Constant Velocity) motion model, and interactive resampling is performed to achieve the combination of the advantages of the two. Finally, in the Gazebo simulation environment based on ROS (Robot Operating System), the speed estimation and accuracy analysis of the square and cylindrical dynamic objects were carried out respectively when the robot was stationary and in motion. The results show that the proposed method has a great improvement in effect compared with the existing methods.

Keywords: grid map; dynamic grid; dynamic objects; filter; indoor environment; environment

Journal Title: Applied Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.