LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High Sensitivity Continuous Monitoring of Chloroform Gas by Using Wavelength Modulation Photoacoustic Spectroscopy in the Near-Infrared Range

Photo from wikipedia

An optical system for gaseous chloroform (CHCl3) detection based on wavelength modulation photoacoustic spectroscopy (WMPAS) is proposed for the first time by using a distributed feedback (DFB) laser with a… Click to show full abstract

An optical system for gaseous chloroform (CHCl3) detection based on wavelength modulation photoacoustic spectroscopy (WMPAS) is proposed for the first time by using a distributed feedback (DFB) laser with a center wavelength of 1683 nm where chloroform has strong and complex absorption peaks. The WMPAS sensor developed possesses the advantages of having a simple structure, high-sensitivity, and direct measurement. A resonant cavity made of stainless steel with a resonant frequency of 6390 Hz was utilized, and eight microphones were located at the middle of the resonator at uniform intervals to collect the sound signal. All of the devices were integrated into an instrument box for practical applications. The performance of the WMPAS sensor was experimentally demonstrated with the measurement of different concentrations of chloroform from 63 to 625 ppm. A linear coefficient R2 of 0.999 and a detection sensitivity of 0.28 ppm with a time period of 20 s were achieved at room temperature (around 20 °C) and atmosphere pressure. Long-time continuous monitoring for a fixed concentration of chloroform gas was carried out to demonstrate the excellent stability of the system. The performance of the system shows great practical value for the detection of chloroform gas in industrial applications.

Keywords: chloroform gas; wavelength modulation; sensitivity; spectroscopy; chloroform

Journal Title: Applied Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.