LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Study on Multiple Factors Affecting the Accuracy of Multiclass Skin Disease Classification

Photo from wikipedia

Diagnosis of skin diseases by human experts is a laborious task prone to subjective judgment. Aided by computer technology and machine learning, it is possible to improve the efficiency and… Click to show full abstract

Diagnosis of skin diseases by human experts is a laborious task prone to subjective judgment. Aided by computer technology and machine learning, it is possible to improve the efficiency and robustness of skin disease classification. Deep transfer learning using off-the-shelf deep convolutional neural networks (CNNs) has huge potential in the automation of skin disease classification tasks. However, complicated architectures seem to be too heavy for the classification of only a few skin disease classes. In this paper, in order to study potential ways to improve the classification accuracy of skin diseases, multiple factors are investigated. First, two different off-the-shelf architectures, namely AlexNet and ResNet50, are evaluated. Then, approaches using either transfer learning or trained from scratch are compared. In order to reduce the complexity of the network, the effects of shortening the depths of deep CNNs are investigated. Furthermore, different data augmentation techniques based on basic image manipulation are compared. Finally, the choice of mini-batch size is studied. Experiments were carried out on the HAM10000 skin disease dataset. The results show that the ResNet50-based model is more accurate than the AlexNet-based model. The transferred knowledge from the ImageNet database helps to improve the accuracy of the model. The reduction in stages of the ResNet50-based model can reduce complexity while maintaining good accuracy. Additionally, the use of different types of data augmentation techniques and the choice of mini-batch size can also affect the classification accuracy of skin diseases.

Keywords: classification; disease classification; accuracy; skin disease

Journal Title: Applied Sciences
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.