Multiple Sclerosis (MS) is a neuroinflammatory demyelinating disease that affects over 2,000,000 individuals worldwide. It is characterized by white matter lesions that are identified through the segmentation of magnetic resonance… Click to show full abstract
Multiple Sclerosis (MS) is a neuroinflammatory demyelinating disease that affects over 2,000,000 individuals worldwide. It is characterized by white matter lesions that are identified through the segmentation of magnetic resonance images (MRIs). Manual segmentation is very time-intensive because radiologists spend a great amount of time labeling T1-weighted, T2-weighted, and FLAIR MRIs. In response, deep learning models have been created to reduce segmentation time by automatically detecting lesions. These models often use individual MRI sequences as well as combinations, such as FLAIR2, which is the multiplication of FLAIR and T2 sequences. Unlike many other studies, this seeks to determine an optimal MRI sequence, thus reducing even more time by not having to obtain other MRI sequences. With this consideration in mind, four Convolutional Encoder Networks (CENs) with different network architectures (U-Net, U-Net++, Linknet, and Feature Pyramid Network) were used to ensure that the optimal MRI applies to a wide array of deep learning models. Each model had used a pretrained ResNeXt-50 encoder in order to conserve memory and to train faster. Training and testing had been performed using two public datasets with 30 and 15 patients. Fisher’s exact test was used to evaluate statistical significance, and the automatic segmentation times were compiled for the top two models. This work determined that FLAIR is the optimal sequence based on Dice Similarity Coefficient (DSC) and Intersection over Union (IoU). By using FLAIR, the U-Net++ with the ResNeXt-50 achieved a high DSC of 0.7159.
               
Click one of the above tabs to view related content.