Cardiovascular diseases (CVDs) kill about 20.5 million people every year. Early prediction can help people to change their lifestyles and to ensure proper medical treatment if necessary. In this research,… Click to show full abstract
Cardiovascular diseases (CVDs) kill about 20.5 million people every year. Early prediction can help people to change their lifestyles and to ensure proper medical treatment if necessary. In this research, ten machine learning (ML) classifiers from different categories, such as Bayes, functions, lazy, meta, rules, and trees, were trained for efficient heart disease risk prediction using the full set of attributes of the Cleveland heart dataset and the optimal attribute sets obtained from three attribute evaluators. The performance of the algorithms was appraised using a 10-fold cross-validation testing option. Finally, we performed tuning of the hyperparameter number of nearest neighbors, namely, âkâ in the instance-based (IBk) classifier. The sequential minimal optimization (SMO) achieved an accuracy of 85.148% using the full set of attributes and 86.468% was the highest accuracy value using the optimal attribute set obtained from the chi-squared attribute evaluator. Meanwhile, the meta classifier bagging with logistic regression (LR) provided the highest ROC area of 0.91 using both the full and optimal attribute sets obtained from the ReliefF attribute evaluator. Overall, the SMO classifier stood as the best prediction method compared to other techniques, and IBk achieved an 8.25% accuracy improvement by tuning the hyperparameter âkâ to 9 with the chi-squared attribute set.
               
Click one of the above tabs to view related content.