Rockfall events consist one of the most hazardous geological phenomena in mountainous landscapes, with the potential to turn catastrophic if they occur near an anthropogenic environment. Rockfall hazard and risk… Click to show full abstract
Rockfall events consist one of the most hazardous geological phenomena in mountainous landscapes, with the potential to turn catastrophic if they occur near an anthropogenic environment. Rockfall hazard and risk assessments are recognized as some of the most challenging surveys among the geoengineering society, due to the urgent need for accurate foresight of likely rockfall areas, together with their magnitude and impact. In recent decades, with the introduction of remote sensing technologies, such as Unmanned Aerial Vehicles, the construction of qualitative and quantitative analyses for rockfall events became more precise. This study primarily aims to take advantage of the UAV’s capabilities, in order to produce a detailed hazard and risk assessment via the proposition of a new semi-quantitative rating system. The area of application is located in the cultural heritage area of Kipinas Monastery in Epirus, Greece, which is characterized by the absence of pre-existing data regarding previous rockfall events. As an outcome, it was shown that the suggested methodology, with the combination of innovative remote sensing technologies with traditional engineering geological field surveys, can lead to the extraction of all the necessary quantitative data input for the proposed rating system for any natural slope.
               
Click one of the above tabs to view related content.