LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reasoning Algorithms on Feature Modeling—A Systematic Mapping Study

Photo from wikipedia

Context: Software product lines (SPLs) have reached a considerable level of adoption in the software industry. The most commonly used models for managing the variability of SPLs are feature models… Click to show full abstract

Context: Software product lines (SPLs) have reached a considerable level of adoption in the software industry. The most commonly used models for managing the variability of SPLs are feature models (FMs). The analysis of FMs is an error-prone, tedious task, and it is not feasible to accomplish this task manually with large-scale FMs. In recent years, much effort has been devoted to developing reasoning algorithms for FMs. Aim: To synthesize the evidence on the use of reasoning algorithms for feature modeling. Method: We conducted a systematic mapping study, including six research questions. This study included 66 papers published from 2010 to 2020. Results: We found that most algorithms were used in the domain stage (70%). The most commonly used technologies were transformations (18%). As for the origins of the proposals, they were mainly rooted in academia (76%). The FODA model continued to be the most frequently used representation for feature modeling (70%). A large majority of the papers presented some empirical validation process (90%). Conclusion: We were able to respond to the RQs. The FODA model is consolidated as a reference within SPLs to manage variability. Responses to RQ2 and RQ6 require further review.

Keywords: systematic mapping; mapping study; reasoning algorithms; feature; feature modeling; algorithms feature

Journal Title: Applied Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.