LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptation of Parallel SaaS to Heterogeneous Co-Located Cloud Resources

Photo from wikipedia

Cloud computing has received increasing attention due to its promise of delivering on-demand, scalable, and virtually unlimited resources. However, heterogeneity or co-location of virtual cloud resources can cause severe degradation… Click to show full abstract

Cloud computing has received increasing attention due to its promise of delivering on-demand, scalable, and virtually unlimited resources. However, heterogeneity or co-location of virtual cloud resources can cause severe degradation of the efficiency of parallel computations because of a priori unknown application-specific performance metrics, load imbalance, and limitations of memory bandwidth. This paper presents the runtime adaptation of parallel discrete element method (DEM) Software as a Service (SaaS) to heterogeneous or co-located resources of the OpenStack cloud. The computational workload is adapted by using weighted repartitioning and runtime measured performance of parallel computations on Docker containers. The high improvement in performance up to 48.7% of the execution time is achieved, applying the runtime adapted repartitioning when the load imbalance is high enough. The low load imbalance leads to the close values of computational load, when small variations in the system load and performance can cause oscillations in subsets of particles. Memory stress tests cause heterogeneity of non-isolated containers, which reduces the performance of memory bandwidth bound DEM SaaS on the co-located resources. The runtime adapted repartitioning handles the constant and periodically variable performance of non-isolated containers and decreases the total execution time of DEM SaaS.

Keywords: saas heterogeneous; heterogeneous located; adaptation parallel; cloud resources; performance

Journal Title: Applied Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.