LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Survey on Moving Target Defense: Intelligently Affordable, Optimized and Self-Adaptive

Photo from wikipedia

Represented by reactive security defense mechanisms, cyber defense possesses a static, reactive, and deterministic nature, with overwhelmingly high costs to defend against ever-changing attackers. To change this situation, researchers have… Click to show full abstract

Represented by reactive security defense mechanisms, cyber defense possesses a static, reactive, and deterministic nature, with overwhelmingly high costs to defend against ever-changing attackers. To change this situation, researchers have proposed moving target defense (MTD), which introduces the concept of an attack surface to define cyber defense in a brand-new manner, aiming to provide a dynamic, continuous, and proactive defense mechanism. With the increasing use of machine learning in networking, researchers have discovered that MTD techniques based on machine learning can provide omni-bearing defense capabilities and reduce defense costs at multiple levels. However, research in this area remains incomplete and fragmented, and significant progress is yet to be made in constructing a defense mechanism that is both robust and available. Therefore, we conducted a comprehensive survey on MTD research, summarizing the background, design mechanisms, and shortcomings of MTD, as well as relevant features of intelligent MTD that are designed to overcome these limitations. We aim to provide researchers seeking the future development of MTD with insight into building an intelligently affordable, optimized, and self-adaptive defense mechanism.

Keywords: affordable optimized; intelligently affordable; target defense; moving target; defense; optimized self

Journal Title: Applied Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.